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Abstract— In recent years there has been a collective research
effort to find new formulations of reinforcement learning
that are simultaneously more efficient and more amenable to
analysis. This paper concerns one approach that builds on
the linear programming (LP) formulation of optimal control
of Manne. A primal version is called logistic Q-learning, and
a dual variant is convex Q-learning. This paper focuses on
the latter, while building bridges with the former. The main
contributions follow: (i) The dual of convex Q-learning is not
precisely Manne’s LP or a version of logistic Q-learning, but
has similar structure that reveals the need for regularization
to avoid over-fitting. (ii) A sufficient condition is obtained
for a bounded solution to the Q-learning LP. (iii) Simulation
studies reveal numerical challenges when addressing sampled-
data systems based on a continuous time model. The challenge
is addressed using state-dependent sampling. The theory is
illustrated with applications to examples from OpenAI gym.
It is shown that convex Q-learning is successful in cases where
standard Q-learning diverges, such as the LQR problem.

I. INTRODUCTION

Ever since the introduction of Watkins’ Q-learning algo-
rithm in the 1980s, the research community has searched
for a general theory beyond the so-called tabular settings (in
which the function class spans all possible functions of state
and action). The natural extension of Q-learning to general
function approximation setting seeks to solve what is known
as a projected Bellman equation (PBE). There are few results
available giving sufficient conditions for the existence of a
solution, or convergence of the algorithm if a solution does
exist [23], [16], [10]. Counterexamples show that conditions
on the function class are required in general, even in a
linear function approximation setting [1], [24], [6]. The GQ-
algorithm of [13] is one success story, based on a relaxation
of the PBE.

Even if existence and stability of the algorithm were
settled, we would still face the challenge of interpreting
the output of a Q-learning algorithm based on the PBE
criterion. Inverse dynamic programming provides bounds on
performance, but only subject to a weighted L∞ bound on
the Bellman error, while RL theory is largely based on L2

bounds [22], [17].
Both logistic Q-learning [2] and convex Q-learning [15],

[9], [11] are based on the convex analytic approach to
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optimal control of [14] and its significant development over
the past 50 years in the control and operations research
literature [4], [21], [25], [5]. There is a wealth of unanswered
questions:

(i) It is shown in a tabular setting that the dual of convex
Q-learning is somewhat similar to Manne’s primal LP [14],
but its sample path form also brings differences.

(ii) The most basic version of convex Q-learning is a linear
program (LP). It is always feasible, but boundedness has
been an open topic for research (except for stylized special
cases). It is shown here for the first time that boundedness
holds if the covariance associated with the basis is full
rank. This may sound familiar to those acquainted with the
literature, but the proof is non-trivial since theory is far from
the typical L2 setting of TD-learning [24], [22], [17], [3].

So far, LP formulations of reinforcement learning (RL)
have restricted to either the tabular or ‘linear MDP” settings
[2], [9], or deterministic optimal control with general linear
function approximation [11]. In this paper we focus on the
latter, since the challenges in the stochastic setting would
add significant complexity.

We consider a nonlinear state space model in discrete time,

x(k+ 1) = F(x(k), u(k)) , k ≥ 0 , x(0) = x ∈ X . (1)

The state space X is a closed subset of Rn, and the input (or
action) space U is finite, with cardinality nU :=|U|, and where
F : X×U→ X. We may have state-dependent constraints, so
that for each x ∈ X there is a set U(x) ⊂ U for which u(k)
is constrained to U(x(k)) for each k. Notation is simplified
by denoting {z(k) = (x(k), u(k)) : k ≥ 0}, evolving on
Z := {(x, u) : x ∈ X , u ∈ U(x)}.

The paper concerns infinite-horizon optimal control,
whose definition requires a cost function c : Z→ R+, and a
pair ze := (xe, ue) ∈ Z that achieves equilibrium:

xe = F(xe, ue).

The cost function c : Z→ R+ vanishes at ze.
These assumptions are imposed so that there is hope that

the (optimal) Q-function is finite valued:

Q?(x, u) = min
u(1),u(2),...

∞∑
k=0

c(x(k), u(k)) ,

x(0) = x ∈ X , u(0) = u ∈ U(x)

(2)

The Bellman equation may be expressed

Q?(x, u) = c(x, u) +Q?(F(x, u)), (3)
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Fig. 1: Average cumulative reward as a function of iteration for three examples. Percentiles are estimated using independent runs.

with Q(x) = minuQ(x, u) for any function Q. The optimal
input is state feedback u?(k) = φ?(x?(k)), using the “Q?-
greedy” policy,

φ?(x) ∈ arg min
u∈U(x)

Q?(x, u) , x ∈ X. (4)

Q-learning algorithms are designed to approximate Q?

within a parameterized family of functions {Qθ : θ ∈ Rd},
and based on an appropriate approximation obtain a policy
in analogy with (4):

φθ(x) ∈ arg min
u∈U(x)

Qθ(x, u) (5)

For any input-state sequence {u(k), x(k) : k ≥ 0}, the
Bellman equation (3) implies

Q?(z(k)) = c(z(k)) +Q?(x(k + 1)) (6)

This motivates the temporal difference sequence: for any θ,
the observed error at time k is denoted

D◦k+1(θ) :=−Qθ(z(k)) + c(z(k)) +Qθ(x(k + 1)) (7)

Given observations over a time-horizon 0 ≤ k ≤ N , one
approach is to choose θ∗ that minimizes the mean-square
Bellman error:

1

N

N−1∑
k=0

[
D◦k+1(θ)

]2
The GQ-algorithm is designed to solve a similar non-convex
optimization problem. There has been great success using
an alternative Galerkin relaxation [17]: A sequence of d-
dimensional eligibility vectors {ζk} is constructed, and the
goal then is to solve a version of the projected Bellman
equation,

0 =
1

N

N−1∑
k=0

D◦k+1(θ)ζk (8)

The standard Q-learning algorithm is based on the tempo-
ral difference sequence Dk+1 :=D◦k+1(θk) in the recursion

θk+1 = θk + αk+1Dk+1ζ
θk
k (9)

with ζθkk = ∇θQθ(z(k))|θ=θk , and {αk+1} is a non-negative
step-size sequence [22], [17]. When convergent, the limit
satisfies a projected Bellman equation similar to (8):

f(θ∗) = 0 , f(θ) = E
[
D◦k+1(θ)ζθk

]
(10)

While not obvious from its description, parameter estimates
obtained from the DQN algorithm solve the same projected
Bellman equation, provided it is convergent (see [11]).

The main contributions and organization of the paper are
summarized as follows:

(i) In TD-learning it is known that the basis must be linearly
independent to obtain a unique solution. Theory developed
in Section II-A implies that a similar condition is both
necessary and sufficient to obtain a bounded constraint region
in the convex program that defines convex Q-learning. This
result is obtained in the general setting with linear function
approximation, so in particular the state space need not be
finite. The main conclusions are summarized in Thm. 2.2.

(ii) The dual of convex Q-learning is described in Section II-
B, along with a number of consequences: Prop. 2.5 provides
an interpretation of complementary slackness as an exact
solution to the dynamic programming equation at selected
state-action pairs. This suggests that regularization is needed
to avoid over-fitting in general.

In the tabular setting, the rank condition ensuring a
bounded constraint region is equivalent to full exploration
of all state-input pairs; this is also a sufficient condition
to ensure that convex Q-learning will compute exactly the
optimal Q-function. In this special case, the dual is similar
to the primal introduced by Manne [14].

(iii) Simulation studies reveal numerical challenges when
addressing sampled-data systems; the challenge is addressed
here using state-dependent sampling.
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Fig. 2: Evolution of one parameter using standard-Q learning. The
estimates converge only when the norm of the initial condition is
sufficiently small.

(iv) Theory is illustrated in Section III with applications to
examples from OpenAI gym. Fig. 1 shows average cumula-
tive reward as a function of training time for three examples.
The algorithm is remarkably robust, and is successful in
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cases where standard Q-learning diverges, such as the LQR
problem. An example of divergence is shown in Fig. 2.
Details may be found in Section III.

II. CONVEX Q-LEARNING

Convex Q-learning is motivated by the classical LP char-
acterization of the value function. For any Q : Z → R, and
r ∈ R, let SQ(r) denote the sub-level set:

SQ(r) = {z ∈ Z : Q(z) ≤ r}
The function Q is called inf-compact if the set SQ(r) is pre-
compact for r in the range of Q. The following may be found
in [17, Ch. 4].

Proposition 2.1: Suppose that the value function Q? de-
fined in (2) is continuous, inf-compact, and vanishes only at
ze. Then, for any positive measure µ on X × U, Q? solves
the following convex program:

max
Q
〈µ, Q〉 (11a)

s.t. Q(z) ≤ c(z) +Q(F(z)) , z ∈ Z (11b)

Q is continuous, and Q(ze) = 0. (11c)
The nonlinear operation that defines Q can be removed if
the input space U is finite, so that (11) can be represented
as an LP; it is always a convex program (even if infinite
dimensional) because this minimization operator is a concave
functional. The LP construction is based on the inequalities
in (19) below.

Convex Q-learning is based on an approximation of the
convex program (11), seeking an approximation to Q? among
a finite-dimensional family {Qθ : θ ∈ Rd}. The value θi
might represent the ith weight in a neural network function
approximation architecture, but to justify the adjective convex
we require a linear family:

Qθ(z) = θᵀψ(z) (12)

subject to the constraint ψi(ze) = 0, for each 1 ≤ i ≤ d. On
introducing the d-dimensional vector

ψ̄µ :=
∑
z∈Z

µ(z)ψ(z) = 〈µ, ψ〉 (13)

it follows that 〈µ, Qθ〉 = θᵀψ̄µ.
Consider the restriction of (11) to this parameterized

family:

max
θ

θᵀψ̄µ (14a)

s.t. Qθ(z) ≤ c(z) +Qθ(F(z)) , z ∈ Z (14b)

This is a convex program of dimension d.
Many model-free algorithms might be used to approximate

a solution to (14). This paper focuses on the simplest
instance, in which an approximation of the inequality con-
straint in (14b) is defined by ΓN (θ) ≤ 0, where N is the
time horizon, and

ΓN (θ) :=
1

N

N−1∑
k=0

[D◦k+1(θ)]− , (15a)

[D◦k+1(θ)]− := max{0,−D◦k+1(θ)} (15b)

with D◦k+1(θ) defined in (7).
In addition to the loss function (15), the algorithm intro-

duced next requires a convex regularizer GN (Q, θ), penalty
parameter κ ≥ 0, tolerance Tol ≥ 0, and a probability
measure µ on B(Z); this will be chosen to be discrete, and
in some cases based on observed input-state pairs.

Convex Q-learning Given the data {z(k) : k ≤ N}, solve

θ∗ ∈ arg min
θ

{
−θᵀψ̄µ + κGN (Qθ, θ)

}
(16a)

s.t. ΓN (θ) ≤ Tol (16b)

Slater’s condition holds provided Tol > 0.

A. Exploration and constraint geometry

In this subsection only we impose an ergodicity assump-
tion to ease analysis. Using the compact notation, c(k) =
c(z(k)) and ψ(k) = ψ(z(k)) for k ≥ 0, the following limits
are assumed to exist,

ψ̄ := lim
N→∞

1

N

N−1∑
k=0

ψ(k) Rψ := lim
N→∞

1

N

N−1∑
k=0

ψ(k)ψ
ᵀ
(k)

and the covariance is denoted Σψ := Rψ − ψ̄ψ̄ᵀ. These
definitions appear in TD-learning; in particular, it is common
to say that {ψi} are linearly independent if Rψ is full rank.
The stronger condition Σψ > 0 is imposed in the following:

Theorem 2.2: The constraint region (16b) is always non-
empty since it contains θ = 0. If Σψ is full rank, then the
constraint region is bounded for all N ≥ 1 sufficiently large.

The lemmas that follow will quickly imply the conclusion
of the theorem. Proofs are contained in the arXiv version of
the paper.

Lemma 2.3: Suppose that the constraint region (16b) is
unbounded for some N ≥ 1. Then there exists a non-zero
vector θ̌ ∈ Rd such that Qθ̌(z(k)) is non-decreasing:

Qθ̌(z(k)) ≥ Qθ̌(z(k − 1)) , 1 ≤ k ≤ N (17)
Lemma 2.4: Suppose that (17) holds for a fixed non-zero

parameter θ̌ ∈ Rd, and every N and every 1 ≤ k ≤ N . Then
Σψ is not full rank.

Proof of Thm. 2.2 We prove the contrapositive: ¬B =⇒ ¬A
where A represents the logical expression “Σψ is full rank”,
and B represents “the constraint region (16b) is bounded for
all N ≥ 1 sufficiently large”.

The constraint region (16b) is non-decreasing with N ,
so that under ¬B it follows that the constraint region is
unbounded for every N . Lemma 2.3 then implies that the
assumptions of Lemma 2.4 hold: this lemma tells us that
Σψ is not full rank, which is ¬A. ut

B. Duality

We consider the dual of (16) in the limiting case where
Tol = 0, and κ = 0, giving

θ∗ = arg max
θ

θᵀψ̄µ s.t. −D◦k(θ) ≤ 0 , 1 ≤ k ≤ N
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Fig. 3: The figure on the left shows how the sampling times τk are chosen based on binning of the state space. The right hand side shows
value functions and their approximations for the mountain car example. The first row illustrates failure of the algorithm due to numerical
instability with fast sampling. The second row shows that state-dependent sampling resolves this issue: the value function approximation
is very close to Q?.

The constraints are convex, but not linear. An LP is obtained
through the equivalent representation of the constraints:

Qθ(z(k − 1))− c(k−1) −Qθ(x(k), u) ≤ 0 (19)

for each 1 ≤ k ≤ N and u ∈ U(x).
For simplicity, in this section only we take U(x) = U for

each x. Denote ui the ith element in U for 1 ≤ i ≤ nU , and
ψ̄µ ∈ Rd is defined in (13).

A column vector C of dimension nC = nU×N and matrix
A of dimension d× nC are defined as follows:

C := [C, · · · , C]ᵀ , C := [c(0), c(1), . . . , c(N−1)]

A :=


A1

A2

...
AnU

 , Ai =


(ψ(0) − ψ(x(0), ui))ᵀ,
(ψ(1) − ψ(x(1), ui))ᵀ,

...
(ψ(N−1) − ψ(x(N), ui))ᵀ


where 1 ≤ i ≤ nU . Then we arrive at the following LP:

max
θ∈Rd

θᵀψ̄µ s.t. Aθ ≤ C (20)

See [12, Ch. 4] for the derivation of its dual:

min

N∑
k=1

∑
u∈U

$k,uc(k−1) (21a)

s.t.
N∑
k=1

∑
u∈U

$k,u{ψ(k−1) − ψ(x(k), u)} = 〈µ, ψ〉 (21b)

where the minimum is over all $ ∈ RN×nU satisfying
$k,u ≥ 0 for each 1 ≤ k ≤ N, u ∈ U.

If $∗ is an optimizer of (21) and θ∗ an optimizer of (20),
then complementary slackness is expressed

$∗k,u[−Qθ∗(z(k − 1)) + c(k−1) +Qθ
∗
(x(k), u)] = 0 (22)

with 1 ≤ k ≤ N, u ∈ U. Prop. 2.5 summarizes an immediate
but interesting consequence.

Proposition 2.5: Suppose that (θ∗, $∗) are primal-dual
optimizers. If $∗k◦,u◦ > 0 for some k◦ and u◦ ∈ U then
the following holds:

0 = min
u
{−Qθ∗(z(k◦ − 1)) + c(k◦−1) +Qθ

∗
(x(k◦), u))}

u◦ ∈ arg min
u

Qθ
∗
(x(k◦), u))

(23)
Proof We have by feasibility of θ∗, for every u ∈ U(x),

−Qθ∗(z(k◦ − 1)) + c(k◦−1) +Qθ
∗
(x(k◦), u) ≥ 0

and if $∗k◦,u◦ > 0 then (22) implies that we achieve this
lower bound:

−Qθ∗(z(k◦ − 1)) + c(k◦−1) +Qθ
∗
(x(k◦), u◦)) = 0

This establishes the desired conclusion. ut
We have a clearer interpretation of the dual variable in the

tabular setting, based on the following representation for the
solution to the primal. Let {z?(k) = (x?(k), u?(k)) : k ≥ 1}
be an optimal solution obtained with z?(0) chosen randomly
according to µ. Then,

〈µ, Q?〉 = E
[ ∞∑
k=0

c(x?(k), u?(k))
]

(24)

In the tabular setting, the basis is a collection of indicator
functions:

ψi(z) = 1{z = zi} , 1 ≤ i ≤ d
where {zi : 1 ≤ i ≤ d} = X × U \ {ze}, so that d =
|X|×nU −1. The equilibrium is omitted since we know that
Q?(ze) = 0.

Proposition 2.6: Consider the tabular setting, and suppose
that each state action pair in X×U \ {ze} is visited at least
once before time N . Suppose also that the optimal policy
φ∗ is unique. Then Q? is an optimizer of (20), and the dual
variable has the representation

N∑
k=1

$∗k,u =

N−1∑
k=0

P{u?(k) = u} , u ∈ U(x?(k)) (25)
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III. NUMERICAL RESULTS

We survey here results from experiments on three exam-
ples from OpenAI Gym, Mountain Car, CartPole, and Ac-
robot, focusing on four topics: (i) State-dependent sampling
to improve algorithm performance; (ii) balancing the trade-
off between exploration and exploitation; (iii) stability and
consistency of convex Q-learning across different domains.
We also consider LQR to demonstrate that convex Q-learning
is successful in cases where standard Q-learning diverges.

The Q-function approximations were defined by a linear
function class in each experiment: {Qθ = θᵀψ : θ ∈ Rd}, in
which the basis functions took the following separable form:

ψi,j(z) =

{
0 , if z = ze,

ki(x)1{u = uj} , 1 ≤ i ≤ dx , else
(26)

The functions {ki} were obtained using the Python
function sklearn.kernel approximation.RBFSampler

with dx = 250; see [19], [20]. Parameters for this function
were chosen to be

σ = [0.05, 0.49, 0.93, 1.37, 1.81, 2.24, 2.68, 3.12, 3.56, 4.00]

The dimension of θ is thus d = dx × nU .
Other approaches were investigated, such as tile coding

[18], radial basis functions, and binning. We omit results
using these approaches since the results were less reliable
for the same dimension.

Numerical Instability due to Fast sampling We frequently
observe, especially when using a basis obtained through
binning, that D◦k+1(θ) ≈ c(k) ≥ 0, only because ‖x(k +
1) − x(k)‖ is small, for which the constraint D◦k+1(θ) ≥ 0
is vacuous. This is purely an artifact of fast sampling: for
example, the sampling interval ∆ chosen in Mountain Car
is 10−3. Increasing the sampling interval will address this
numerical challenge, but create new challenges because of
the introduction of delay.

It is demonstrated here that state-dependent sampling can
be designed to address this numerical challenge.

The sampling scheme begins with binning: express the
state space as a disjoint union X = ∪iXi, and select sampling
times {τk} so that sampled states are in distinct bins as
illustrated in the plot on the left hand side of Fig. 3. The
sampling times are defined recursively as follows: choose an
upper limit n̄, take τ0 = 0, and for all k ≥ 0 denote

τk+1 = min{τk + n̄, τ0
k+1}

τ0
k+1 = min{j ≥ τk + 1 : Bin(x(τj)) 6= Bin(x(τk))} (27)

where Bin(x) denotes the index for the bin containing x. It is
assumed that the input takes a constant value on the interval
[τk, τk+1) for each k, which justifies the the introduction of
the cumulative cost,

Cτk =

τk+1−1∑
j=τk

c(x(j), u(τk))

The temporal difference sequence is then redefined:

D̂◦k+1(θ) :=−Qθ(z(τk)) + Cτk +Qθ(x(τk+1)) (28)

Episodic Convex Q Learning The basic algorithm (16)
has been the focus of the previous section mainly for ease
of analysis. The experiments that follow are designed to
approximate the solution to the finite time-horizon optimal
control problem.

In each example there is a goal set XE ⊂ X after which
the state is reset. For training, we restart when the goal is
reached. The initial condition xn(Tn) for the nth episode
after restart is chosen uniformly at random from X◦ ⊂ X.
The successive restart times are defined by T0 = 0, and

Tn+1 := min{n̄E , T ◦n+1}
T ◦n := min{τk ≥ Tn : xn(τk) ∈ XE} , n ≥ 0 ,

with n̄E an upper limit imposed on the episode length, and
{xn(τk)} the trajectory from the nth episode.

With Bn+1 := Tn+1 − Tn, the parameter estimates are
updated only at these times according to

θn+1 = arg min
{
−θᵀψ̄µ + κGn(θ) + 1

2

1

αn+1
‖θ − θn‖2

}
s.t. ΓTn

(θ) =
1

Bn+1

Tn+1−1∑
k=Tn

[D̂◦k+1(θ)]− ≤ Tol

in which {αn+1} plays a role similar to a step-size sequence.
A constant value worked well in all experiments.

The sensitivity of performance with respect to the co-
efficient κ was investigated for each regularizer. The plots
on the left hand side of Fig. 4 were obtained using the
regularizer Gn = G1

n, defined in Fig. 6. The best value in
these experiments is κ = 0.01.

With κ = 0.01 fixed, we then compared performance of
convex Q-learning using the regularizers shown in Fig. 6,
with D̂◦k+1(θ) defined in (28), and D̂DQN

k+1 (θ):=−Qθ(z(τk))+

Cτk +Qθn(x(τk+1)) (note dependency on n).
The plots in Fig. 4 show that G1

n gives the best per-
formance; this regularizer was chosen in all subsequent
experiments, with κ = 0.01.
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Fig. 5: Comparison of average cumulative rewards for the Acrobot with four different values of εmax
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Fig. 6: Four regularizers considered in convex Q experiments.

Exploration The numerical results expose one gap in
current theory: we obtain a convex program only when the
input does not depend on parameters. In each experiment,
performance of convex Q-learning was greatly improved
with an epsilon-greedy policy. The following experiments
are based on the following input sequence for training:

φ̆θn(u | x) := P{u(τk) = u | x(τk) = x}
= (1− εn)PE(u) + εn1{u = φθn(x)}

where PE is the uniform distribution on U(x). The explo-
ration parameter was chosen to be monotone increasing in
n: for parameters ξ, εmax chosen in the interval [0, 1],

εn+1 = max{(1 + ξ)εn, εmax} , n ≥ 0 (30)

initialized with ε0 > 0 (a small constant).
Validation A parameter θ ∈ Rd was evaluated by conduct-
ing N independent experiments under the Qθ-greedy policy.
The nth experiment results in a time Tn at which the terminal
state is reached, and data {zn(τk) : Tn ≤ k ≤ Tn+1}.

The examples from OpenAI Gym are based on a one-
step reward function r; c = −r was used in the algorithms
described above, but for validation we computed the average
cumulative reward:

R(φθ) :=− 1

N

N∑
n=1

[ Tn+1−1∑
k=Tn

Cτk
]

(31)

with un(τk) = φθ(xn(τk)).
Experimental results in three examples To test consistency
of outcomes we performed repeated runs in several control
system examples.

In each case, 50 independent experiments where executed,
in which the initial condition θ0 was chosen independently
according to a normal distribution N(0, I), and initial con-
ditions were chosen uniformly from X◦.

Selected results are collected in Fig. 1, which show that
convex Q-learning succeeded in solving the three examples,
with remarkable consistency across runs.

Fig. 3 shows results obtained for the Mountain Car prob-
lem: the first row shows the failure of the algorithm with
fast sampling (time-steps from the standard model); the value
function approximation is very poor, and it was found that
the resulting Qθ-greedy policy is unacceptable. The second
row shows nearly perfect approximation of the true value
function Q? when using state-dependent sampling.

It will not surprise many readers to learn that the parameter
εmax defined in (30) should be chosen with some care.
Fig. 5 shows results from four implementations of convex
Q-learning for the Acrobot: each figure includes two plots
as a function of episode n: the exploration parameter εn and
the cumulative reward R(φθn) obtained from parameter θn
(definition in (31)). The plots shown on the left hand side
use εmax = 0.95 and εmax = 0.5. It is seen that the reward
quickly reaches the desired value that is considered a solution
to the Acrobot example: R∗ ≥ −100. The plot on the lower
right shows that there is greater bias with pure exploration,
i.e., εmax = 0.

The algorithm with εmax = 1 fails: The plots on the top
right hand side show that performance drastically drops at
episode 8,000, when εn reaches about 0.975.
Comparison with standard Q-learning A very simple
example shows the striking difference between convex Q-
learning and the standard algorithm (9).

Consider the one-dimensional LQR model with dynamics
ẋ = u, and quadratic cost c(x, u) = x2 + u2, so that the
optimal policy is linear state feedback, and the Q-function
is quadratic. This motivates the basis Qθ(x, u) := θᵀψ(x, u)
with ψ(x, u) = [x2, 2xu, u2]ᵀ.

Convex Q-learning and the standard Q-learning algorithm
were compared with an ideal input for training: u(t) =
−K∗x(t)+

∑10
i=1 sin((10+40vi)t), with K∗ the optimal gain

and vi uniformly sampled from [−1, 1]. With Tol = 0.01 and
no regularizer, the solutions of convex Q-learning (14) are
consistent after a short run. Fig. 2 shows that the algorithm
(9) diverges unless the initial condition is small. The source
of instability is lack of Lipschitz continuity in the recursion,
because Qθ(z) grows quadratically in ‖θ‖.
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IV. CONCLUSION AND FUTURE WORK

Convex Q-learning is a recent approach to reinforcement
learning, whose main appeal is that we have a better under-
standing of what the algorithm is attempting to solve. There
are of course many open questions that will be explored in
future research: can we obtain performance bounds in non-
ideal settings? There is some hope, given that Lyapunov
functions might be introduced in an augmented LP. Can
we extend convergence theory to the parameter-dependent
policies used in the numerical results? Can we obtain more
efficient algorithms using deeper theory of quasi-stochastic
approximation [8], [7]? We are also considering alternate
algorithm architectures for application of RKHS techniques.
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