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Abstract— It is well known that the extension of Watkins’
algorithm to general function approximation settings is chal-
lenging: does the “projected Bellman equation” have a solu-
tion? If so, is the solution useful in the sense of generating a
good policy? And, if the preceding questions are answered in
the affirmative, is the algorithm consistent? These questions
are unanswered even in the special case of Q-function ap-
proximations that are linear in the parameter. The challenge
seems paradoxical, given the long history of convex analytic
approaches to dynamic programming.

Our main contributions are summarized as follows:
(i) A new class of convex Q-learning algorithms is intro-

duced based on a convex relaxation of the Bellman equation.
Convergence is established under general conditions for linear
function approximation.

(ii) A batch implementation appears similar to LSPI and
DQN algorithms, but the difference is substantial: while convex
Q-learning solves a convex program that approximates the
Bellman equation, theory for DQN is no stronger than for
Watkins algorithm with function approximation.

These results are obtained for deterministic nonlinear sys-
tems with total cost criterion. Extensions are proposed.

I. INTRODUCTION

This paper concerns design of reinforcement learning
algorithms for nonlinear, deterministic state space models.
The setting is deterministic systems in discrete time, where
the main ideas are most easily described. Specifically, we
consider a nonlinear state space model

xk+1 = F(xk, uk) , k ≥ 0 , x0 ∈ X , (1)

with state space X, input (or action) space U, and where
F : X× U→ X. (the sets X and U are general).

It is assumed that there is (xe, ue) ∈ X×U that achieves
equilibrium:

xe = F(xe, ue).

The paper concerns infinite-horizon optimal control, whose
definition requires a cost function c : X×U→ R+. The cost
function is non-negative, and vanishes at (xe, ue).
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The (optimal) value function is denoted

J?(x) = min
u

∞∑
k=0

c(xk, uk) , x0 = x ∈ X , (2)

where the minimum is over all input sequences u := {uk :
k ≥ 0}. The goal of optimal control is to find an optimizing
input sequence, and in the process we often need to compute
the value function J?. We settle for an approximation in the
majority of cases. In this paper the approximations will be
based on Q-learning; it is hoped that the main ideas will be
useful in other formulations of reinforcement learning.

Background The “Q-function” of reinforcement learning is

Q?(x, u) := c(x, u) + J?(F(x, u)), (3)

and the usual Bellman equation is expressed as

J?(x) = min
u∈U(x)

Q?(x, u), (4)

where U(x) ⊂ U captures input-constraints. This implies the
following fixed-point equation for the Q-function:

Q?(x, u) = c(x, u) +Q?(F(x, u)), (5)

with Q(x) = minuQ(x, u) for any function Q. The optimal
input is state feedback u?k = φ?(x?k), with

φ?(x) ∈ arg min
u

Q?(x, u) , x ∈ X. (6)

Temporal difference (TD) and Q-learning are two large
families of reinforcement learning algorithms based on
approximating the value function or Q-function as a means
to approximate φ? [40], [6], [5]. Consider a parameterized
family {Qθ : θ ∈ Rd}, each a real-valued function on
X × U. For example, the vector θ might represent weights
in a neural network. Q-learning algorithms are designed
to approximate Q? within this parameterized family. Given
the parameter estimate θ ∈ Rd, the “Qθ-greedy policy” is
obtained:

φθ(x) = arg min
u

Qθ(x, u) (7)

Ideally, we would like to find an algorithm that finds a value
of θ so that it best approximates the optimal policy.

Most algorithms use the following interpretation of (5):

Q?(xk, uk) = c(xk, uk) +Q?(xk+1) (8)

valid for any input-state sequence {uk, xk : k ≥ 0}. Two
general approaches to define θ∗ are each posed in terms of
the temporal difference:

Dk+1(θ) :=−Qθ(xk, uk) + c(xk, uk) +Qθ(xk+1) (9)
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assumed to be observed on the time-horizon 0 ≤ k ≤ N .
(i) Often considered a gold standard loss function is the

mean-square Bellman error associated with (9):

Eε(θ) =
1

N

N−1∑
k=0

[
Dk+1(θ)

]2
(10)

(ii) Watkins’ Q-learning algorithm, as well as the earlier TD
methods of Sutton can be cast as a Galerkin relaxation
of the Bellman equation: A sequence of d-dimensional
eligibility vectors {ζk} is constructed, and the goal then
is to solve

0 =
1

N

N−1∑
k=0

Dk+1(θ)ζk (11)

In the original algorithm of Watkins,
N The algorithm is defined for finite state and action MDPs
(Markov Decision Processes), and Q? ∈ {Qθ : θ ∈ Rd}
(the goal is to compute the Q-function exactly).
N The approximation family is linear Qθ = θᵀψ, with
ψ : X× U→ Rd, and ζk = ψ(xk, uk).

Equation (11) is not how Q-learning algorithms are typically
presented, but approximates the goal in many formulations.
A limit point of Watkins’ algorithm, and generalizations
such as [28], [23], solves the “projected Bellman equation”:

f(θ∗) = 0 , f(θ) = E
[
Dk+1(θ)ζk

]
(12)

where the expectation is in steady-state (one assumption
being the existence of a steady-state). The basic extension
of Watkins’ algorithm is defined by the recursion

θn+1 = θn + αn+1Dn+1ζn (13)

with {αn} the non-negative step-size sequence, and Dn+1 is
short-hand for Dn+1(θn). The recursion (13) is called Q(0)-
learning for the special case ζn = ∇θQθ(xn, un)

∣∣
θ=θn

,
in analogy with TD(0)-learning [16], [29]. Criteria for
convergence is typically cast within the theory of stochastic
approximation, which is based on the ODE,

d
dtϑt = f(ϑt) , ϑ0 ∈ Rd (14)

Conditions for convergence are very restrictive [28], [23].
While not obvious from its description, the DQN algo-

rithm (a significant component of famous applications such
as AlphaGo) will converge to the same projected Bellman
equation, provided it is convergent—see Prop. 3.3 below.

This opens an obvious question: does (12) have a solu-
tion? Does the solution lead to a good policy? An answer
to the second question is wide open, despite the success
in applications. The answer to the first question is, in
general, no. The conditions imposed in [28] for a solution
are very strong, and not easily verified in any applications;
the more recent work [23] offers improvements, but nothing
approaching a full understanding of the algorithm.

The question of existence led to an entirely new approach
in [24], based on the non-convex optimization problem:

min
θ
J(θ) = min

θ

1
2f(θ)ᵀMf(θ), with M > 0 (15)

and f defined in (12). Consider the continuous-time gradi-
ent descent algorithm associated with (15):

d
dtϑt = −[∂θf (ϑt)]

ᵀMf(ϑt) (16)

The GQ-learning algorithm is a stochastic approximation
(SA) translation of this ODE, using M = E[ζnζ

ᵀ
n]−1.

Convergence holds under conditions, such as a coercive
condition on J (which is not easily verified a-priori). Most
important: does this algorithm lead to a good approximation
of the Q-function, or the policy?

This brings us back to (ii): why approximate the solution
of (12)? We do not have an answer. In this paper we return
to (10), for which we seek convex re-formulations.

Contributions. The apparent challenge with approximating
the Q-function is that it solves a nonlinear fixed point
equation (5) or (8), for which root finding problems for
approximation may not be successful (as counter examples
show). This challenge seems paradoxical, given the long
history of convex analytic approaches to dynamic program-
ming in both the MDP literature [25], [15], [7] and the linear
optimal control literature [42].

The starting point of this paper is to clarify this paradox,
and from this create a new family of RL algorithms designed
to minimize a convex variant of the empirical mean-square
error (10). This step was anticipated in [26], for which a
convex formulation of Q-learning was proposed for deter-
ministic systems in continuous time.

The main contributions are summarized as follows:
(i) We introduce a variant of the classic linear-programming
(LP) formulation of dynamic programming [25], [15], [7],
[13], [14] that lends itself to data driven RL algorithms for
nonlinear control systems. The key feature of our formula-
tion absent from previous work is the introduction of the
Q-function in the LP. The precise formulation of the newly
introduced “DPLP” (dynamic programming linear program)
is given in Prop. 2.1 for deterministic control systems, with
generalizations to MDPs in [27]. The relationship with semi-
definite programs for LQR is made precise in Prop. 2.2
(ii) New Q-learning algorithms inspired by the DPLP. A
casual reader might mistake some of these algorithms (e.g.,
the one given in Equation (42)) for the DQN algorithm,
although there are several subtle differences that have impor-
tant implications, as made clear in Propositions 3.1 and 3.3:
the DQN algorithm cannot solve the minimal mean-square
Bellman error optimization problem. Rather, any limit of
the algorithm must solve the relaxation (12) (recall that
there is little theory surrounding existence or interpretation
of solutions to this fixed point equation).
(iii) Under mild conditions, including a linear function
approximation architecture, parameter estimates from the
Batch Convex Q algorithm will converge to the solution
to the convex program

min
θ
− 〈µ,Qθ〉+ κεE

[{
D◦k+1(θ)

}2
−
]

s.t. E
[
min
i
{D◦k+1(θ)ζεk (i)}

]
≥ 0

(17)
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where D◦k+1(θ) denotes the observed Bellman error:

D◦k+1(θ) :=−Qθ(xk, uk) + c(xk, uk) +Qθ(xk+1)

The expectations in (17) are in steady-state. The remaining
variables are part of the algorithm design: {ζεk} is a non-
negative vector-valued sequence, µ is a positive measure,
and κε is non-negative.

The convex program (17) is a relaxation of the DPLP,
which is tight under ideal conditions (including the as-
sumption that Q? is contained in the function class). See
Corollary 3.2 for details.

As in [26], it is argued that there is no reason to intro-
duce random noise for exploration for RL in deterministic
control applications. Rather, we opt for the quasi-stochastic
approximation (QSA) approach of [26], [11].

Literature review This paper began as a resurrection of
the conference paper [26], which deals with Q-learning
for deterministic systems in continuous time. A primitive
version of convex Q-learning was introduced; the challenge
at the time was to find ways to create a reliable online
algorithm. This is resolved in the present paper through a
combination of Galerkin relaxation techniques and ERM.

Two recent related papers appeared in an MDP setting:
[22] is based on a variant of the convex program (21), with
the inequality in (21b) replaced by equality, and [33] derives
optimistic exploration algorithms for episodic MDPs from
an LP formulation closely related to the DPLP presented
here. Neither of these authors were aware of the prior
2009 work [26], in which (21) was first introduced in
continuous time. The article [22] contains substantial theory
for a very special case: the tabular MDP setting in which
the function class parameterizes all possible Q-functions.
Further theoretical results for linear function approximation
are presented in Sections 2 and 5 of [33]. We see no overlap
in contributions.

The ideas in [26] and the present paper were inspired
in part by the LP approach to dynamic programming intro-
duced by Manne in the 60’s [25], [15], [1], [7]. A significant
program on linear programming approaches to approximate
dynamic programming is presented in [13], [14], but we do
not see much overlap with the present work. This line of
research finds its roots in the early work of Schweitzer and
Seidmann [39], which is coincidentally the first reference
that we are aware of to propose the loss function (10)
for approximate dynamic programming. There is a also
on-going research on LP approaches to optimal control
for deterministic systems [43], [20], [9], and semi-definite
programs (SDPs) in linear optimal control [44].

Deep Q-Learning (DQN) algorithms have been first pro-
posed by Riedmiller [37] and have started to attract attention
following their breakthrough application to train human-
level Atari agents by Mnih et al. [31], [32]. Since then,
numerous subsequent improvements have been made to the
basic DQN method [41], [45], [3], [12], eventually culminat-
ing in the “Rainbow DQN” algorithm of Hessel et al. [19].
Throughout this subsequent work, the squared Bellman error

objective (10) has remained an important core component of
DQN algorithms (although it has been sometimes replaced
by even more complicated loss functions depending on the
entire distribution of the squared errors [3], [12]), and it
has been used extensively in other reinforcement learning
algorithms that are not based on approximate dynamic
programming [38], [30], [18], [17]. We do not know if
the research community is aware that DQN algorithms, if
convergent, will converge to the projected Bellman equation
(12), and that an ODE approximation of DQN is identical
to that of (13) (for which stability theory is currently very
weak). A formal definition of “ODE approximation” is
provided at the end of Section II.

The concurrent work of Bas-Serrano et al. [2] bears
several similarities to the present paper: most notably, they
present another convex alternative to the squared Bellman
error (10) called the logistic Bellman error, which is also
derived from the same DPLP we use as our starting point.
That said, the two papers diverge significantly when it comes
to the details of the algorithm design and the nature of the
performance guarantees. Unifying the advantages of the two
approaches is an exciting direction for future research.

The remainder of the paper is organized as follows.
Section II begins with a review of linear programs for
optimal control, and new formulations designed for appli-
cation in RL. Section III shows how concepts from least
squares value iteration can be adopted to obtain efficient
approximations of the DPLP for application in RL. Their
relationship with DQN (as well as significant advantages) is
explained. The theory is illustrated with a single example in
Section IV. Section V contains conclusions and topics for
future research. Technical proofs are contained in [27].

II. CONVEX Q-LEARNING

The RL algorithms introduced in this paper are designed
to approximate the value function J? within a finite-
dimensional function class {Jθ : θ ∈ Rd}. We obtain a
convex program when this parameterization is linear.

As surveyed in the introduction, a favored approach in
Q-learning is to consider for each θ ∈ Rd and x ∈ X, the
associated Bellman error

Bθ(x) = −Jθ(x) + min
u

[c(x, u) + Jθ(F(x, u))] (18)

A generalization of (10) is to introduce a weighting measure
µ (typically a probability mass function (pmf) on X), and
consider the mean-square Bellman error

E(θ) =

∫
[Bθ(x)]2 µ(dx) (19)

A significant challenge is that the loss function E is not
convex. We obtain a convex optimization problem that is
suitable for application in RL by approximating simultane-
ously J? and Q?, where the Q-function is defined in (3).

Proofs of all technical results can be found in [27].
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Bellman Equation is a Linear Program For any J : X→
R, and any r ∈ R, let SJ(r) denote the sub-level set:

SJ(r) = {x ∈ X : J(x) ≤ r} (20)

The function J is called inf-compact if the set SJ(r) is
either pre-compact, empty, or SJ(r) = X (depending on r).

Proposition 2.1: Suppose that the value function J? de-
fined in (2) is continuous, inf-compact, and vanishes only
at xe. Then, for any positive measure µ on X× U, the pair
(J?, Q?) solve the following convex program:

max
J,Q

〈µ,Q〉 (21a)

s.t. Q(x, u) ≤ c(x, u) + J(F(x, u)) (21b)
Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x) (21c)

J is continuous, and J(xe) = 0. (21d)

The LP (21) is more complex than found in the literature
[1], but is far more easily adapted to RL applications. To
see why, define for any (J,Q) the Bellman error:

D◦(J,Q)(x,u) :=−Q(x, u) + c(x, u) + J(F(x, u)) (22)

Similar to the term Dn+1 appearing in (13), we have for
any input-state sequence,

D◦(J,Q)(xk,uk) = −Q(xk, uk) + c(xk, uk) + J(xk+1)

Hence we can observe the Bellman error along the sample
path. The right hand side will be called the temporal
difference, generalizing the standard terminology.

Semi-definite program for LQR Consider the LTI model:

xk+1 = Fxk +Guk, x0 = x (23a)
y(k) = Hxk (23b)

where (F,G,H) are matrices of suitable dimension (in
particular, F is n × n for an n-dimensional state space),
and assume that the cost is quadratic:

c(x, u) = ‖y‖2 + uᵀRu (24)

with y = Hx, and R > 0. We denote S = HᵀH ≥ 0.
The variables in the LP (21) can be restricted to quadratics

in this special case, and with this restriction it is equivalent
to a semi-definite program:

Proposition 2.2: Suppose that (F,G) is stabilizable and
(F,H) is detectable, so that J? is everywhere finite. Then,
the value function and Q-function are each quadratic:
J?(x) = xᵀM?x for each x, where M? ≥ 0 is a solution
to the algebraic Riccati equation. The matrix M? is also the
solution to the following convex program:

M? ∈ arg max
(
trace (M)

)
s.t.

[
S 0
0 R

]
+

[
FTMF FTMG
GTMF GTMG

]
≥
[
M 0
0 0

]
where the maximum is over symmetric matrices M , and the
inequality constraint is in the sense of symmetric matrices.

LQR and DQN For the linear system (23) with quadratic
cost (24), the Q-function is a quadratic. To apply Q-learning
we might formulate a linear parameterization:

Qθ(x, u) = xᵀMFx+ 2uᵀNx+ uᵀMGu

in which the three matrices depend linearly on θ. The Q-
learning algorithm (13) and the DQN algorithm require the
minimum of the Q-function, which is easily obtained:

Qθ(x) = min
u
Qθ(x, u) = xᵀ

{
MF −NᵀM−1G N

}
x

Consequently, the function Qθ, and f defined in (12), are
unlikely to be Lipschitz continuous.

Exploration and Quasi-Stochastic Approximation The
success of an RL algorithm based on temporal difference
methods depends on the choice of input u during train-
ing. The purpose of this section is to make this precise,
and present our main assumption on the input designed
for generating data to train the algorithm (also known as
exploration).

Throughout the paper it is assumed that the input used
for training is state-feedback with perturbation:

uk = φ(xk,ξk) (25)

where the exploration signal ξ is a bounded sequence
evolving on Rp for some p ≥ 1. As a means to reduce
variance we adopt the quasi-stochastic approximation (QSA)
setting of [26], [4]. For example, ξk may be a mixture of
sinusoids of irrational frequencies.

It will be convenient to assume that the exploration is
Markovian, which for a deterministic sequence means it is
the state process for a nonlinear state space model:

ξk+1 = H(ξk) (26)

It is assumed that H : Rp → Rp is continuous. Subject to
the policy (25), it follows that the triple Φk = (xk, uk,ξk)ᵀ

is also Markovian, with state space Z = X × U × Rp. The
continuity assumption imposed below ensures that Φ has the
Feller property, and boundedness of Φ from just one initial
condition implies the existence of an invariant probability
measure that defines the “steady state” behavior [29].

Denote, for any continuous function g : Z→ R,

gN =
1

N

N∑
k=1

g(Φk) , N ≥ 1

For any L > 0 denote

GL = {g : ‖g(z′)− g(z)‖ ≤ L‖z − z′‖, for all z, z′ ∈ Z}
The following is assumed throughout this section.

(Aξ) The state and action spaces X and U are Polish
spaces; F defined in (1), φ defined in (25), and H in (26)
are each continuous on their domains, and the larger state
process Φ is bounded and ergodic in the following sense:
There is a unique probability measure $, with compact
support, such that for any continuous function g : Z→ R,
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the following ergodic average exists for each initial
condition Φ0

E$[g(Φ)] := lim
N→∞

gN (27)

Moreover, the limit is uniform: for each L <∞,

lim
N→∞

sup
g∈GL

|gN − E$[g(Φ)]| = 0 ut

For analysis of Q-learning with function approximation, the
vector field introduced in (12) is defined similarly: f(θ) =

lim
N→∞

1

N

N∑
k=1

[
−Qθ(xk, uk) + c(xk, uk) +Qθ(xk+1)

]
ζεk

The choice of “exploration policy” (25) is imposed mainly
to simplify analysis. We might speed convergence signifi-
cantly with an “epsilon-greedy policy”:

uk = φθk(xk,ξk)

in which the right hand side is a perturbation of the exact
Qθ-greedy policy (7), using current estimate θk. There is a
growing literature on much better exploration schemes, mo-
tivated by techniques in the bandits literature [34], [35]. The
marriage of these techniques with the algorithms introduced
in this paper is a subject for future research.
ODE approximations The technical results that follow
require that we make precise what we mean by ODE
approximation. Consider a recursion of the form

θn+1 = θn + αn+1fn+1(θn) , n ≥ 0 (28)

in which {fn} admits an ergodic limit:

f(θ) := lim
N→∞

1

N

N∑
k=1

fk(θ) , θ ∈ Rd

The associated ODE is defined using this vector field:
d
dtϑt = f(ϑt) (29)

An ODE approximation is defined by mimicking the usual
Euler construction: the time-scale for the ODE is defined by
the non-decreasing time points t0 = 0 and tn =

∑n
0 αk for

n ≥ 1. Define a continuous time process Θ by Θtn = θn
for each n, and extend to all t through piecewise linear
interpolation. The next step is to fix a time horizon for
analysis of length T > 0 (its choice is determined based
on properties of the ODE). Denote T0 = 0, and

Tn+1 = min{tn : tn − Tn ≥ T } , n ≥ 0 (30)

Let {ϑnt : t ≥ Tn} denote the solution to the ODE (29)
with initial condition ϑnTn = θk(n), with index defined so
that tk(n) = Tn. We then say that the algorithm (28) admits
an ODE approximation if for each initial θ0,

lim
n→∞

sup
Tn≤t≤Tn+1

‖Θt − ϑnt ‖ = 0 (31)

Basic algorithm The RL algorithms introduced in this
paper are all motivated by the “DPLP” (21). We search
for an approximate solution among a finite-dimensional

family {Jθ , Qθ : θ ∈ Rd}. The value θi might represent
the ith weight in a neural network function approximation
architecture, but to justify the adjective convex we require a
linear family:

Jθ(x) = θᵀψJ(x) , Qθ(x, u) = θᵀψ(x, u) (32)

normalized with Jθ(xe) = 0 for each θ.
The temporal difference sequence is a modification of (9):

D◦k+1(θ) :=−Qθ(xk, uk) + c(xk, uk) + Jθ(xk+1) (33)

The algorithms are designed so that Jθ approximates Qθ,
and hence D◦k+1(θ) ≈ Dk+1(θ) (recall from below (5),
Q(x) = minuQ(x, u) for any function Q). For this it is
useful to introduce an additional loss function:

Eε(θ) =
1

N

N−1∑
k=0

[
D◦k+1(θ)

]2
(34)

The first of several versions of “CQL” involves a Galerkin
relaxation of the constraints in the DPLP (21). This requires
specification of two vector valued sequences {ζεk , ζ+k } based
on the data, and denote

zε(θ) =
1

N

N−1∑
k=0

min
i

{
D◦k+1(θ)ζεk (i)

}
(35a)

z+(θ) =
1

N

N−1∑
k=0

max
i

{[
Jθ(xk)−Qθ(xk, uk)

]
ζ+k (i)

}
(35b)

with temporal difference sequence {D◦k+1(θ)} defined in
(33). It is assumed that the vector valued sequences {ζεk , ζ+k }
take values in RM+ for some M > 1.

In addition we introduce the convex loss functions:

E+(θ) =
1

N

N−1∑
k=0

[
{Jθ(xk)−Qθ(xk, uk)}+

]2
(36a)

or E+(θ) =
1

N

N−1∑
k=0

[
{Jθ(xk)−Qθ(xk)}+

]2
(36b)

where {q}+ = max(q, 0). The second option (36b) more
strongly penalizes deviation from the constraint Qθ ≥ Jθ.
The choice of definition (36a) or (36b) will depend on the
relative complexity, which is application-specific.
Convex Q-Learning For positive scalars κε and κ+, and
a tolerance Tol ≥ 0,

θ∗ = arg min
θ

{
−〈µ,Qθ〉+ κεEε(θ) + κ+E+(θ)

}
(37a)

s.t. zε(θ) ≥ −Tol (37b)
z+(θ) ≤ Tol (37c)

The following result shows that care must be taken in
choice of µ. The proof is straightforward.

Proposition 2.3: Consider the tabular setting of Watkins:
both input space and state space are finite, Qθ = θᵀψ, and
ψi is the indicator function of pair (xi, ui). Suppose there
is a pair (x•, u•) that is never visited. Then the value of the
convex program (37) is infinite. ut
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III. BATCH CONVEX Q-LEARNING

To understand why the optimization problem (37) may
present challenges, consider their implementation based on
a kernel. Either of these optimization problems is a convex
program. However, due to the Representer Theorem, the
dimension of θ is equal to the number of observations N .
Even in simple examples, the value of N for a reliable
estimate may be larger than one million. Another challenge
observed in numerical experiments is the sensitivity to hard
constraints, in particular the constraint Qθ(x, u) ≥ Jθ(x)
for all x, u. The batch RL algorithms described here are
designed to reduce complexity, and there are many other
potential benefits [21].
BCQL We proceed in two steps. First, we remove the
function J from the DPLP (21). On replacing J with Q
we obtain the convex program:

max
Q
〈µ,Q〉 (38a)

s.t. Q(x, u) ≤ c(x, u) +Q(F(x, u)) , all x, u (38b)

Q is continuous, and Q(xe) = 0. (38c)

The objective and constraints are convex because Q is a
concave functional of Q.

It may appear that we have introduced complexity, but this
is easily resolved. Consider first the objective: The proof of
Prop. 2.1 can be modified to establish Q ≤ J? for any
feasible Q. This and (38b) imply

Q?(x, u) := c(x, u) + J?(F(x, u)) ≥ Q(x, u)

So, we can simplify (38a) to

max
Q
〈µ,Q〉 (39)

with µ now a probability measure on X× U.
The next question is how to reduce the complexity of the

constraint (38b). For this, we apply batch RL methods [21].
We first present two algorithms for which we currently have
strong theoretical results.

The time-horizon N is broken into B batches of more
reasonable size, defined by the sequence of intermediate
times T0 = 0 < T1 < T2 < · · · < TB−1 < TB = N ,
and for 0 ≤ n ≤ B − 1 we introduce the loss function

Eεn(θ) =
1

rn

Tn+1−1∑
k=Tn

[
{−D◦k+1(θ)}+

]2
(40a)

D◦k+1(θ) :=−Qθ(xk, uk) + c(xk, uk) +Qθ(xk+1) (40b)

with rn = 1/(Tn+1 − Tn). The introduction of the positive
part in (40a) is required to preserve convexity. Also required
are a sequence of regularizers: Rn(Q, θ) is a convex func-
tional of Q, θ, that may depend on θn.
Batch Convex Q-Learning 1 With θ0 ∈ Rd given, along
with a sequence of positive scalars {κεn}, define

θn+1 = arg min
θ

{
−〈µ,Qθ〉+ κεnEεn(θ) +Rn(Qθ, θ)

}
(41a)

The constraints (37b, 37c) are relaxed in BCQL only to
streamline the discussion that follows.

How to choose a regularizer? It is expected that design
of Rn will be inspired by proximal algorithms, so that it
will include a term of the form ‖θ − θn‖2 (most likely a
weighted norm—see optimal choice in [27]). With a simple
scaled norm, the update defining θn+1 becomes

arg min
θ

{
−〈µ,Qθ〉+ κεnEεn(θ) +

1

αn+1

1
2‖θ− θn‖2

}
(42)

where {αn} plays a role similar to a step-size.
Convergence in this special case is established in the

following result, based on the steady-state expectation

Ēε(θ) = E$
[
[{−D◦k+1(θ)}+]2

]
(43)

Proposition 3.1: Consider the BCQL algorithm (42) sub-
ject to the following assumptions:

(i) The parameterization {Qθ} is linear, and Ēε is strongly
convex, with Lipschitz gradient.

(ii) αn = α1/n, with α1 > 0.
(iii) The parameters reach steady-state limits:

r := lim
n→∞

rn , κε := lim
n→∞

κεn

Then, the algorithm is consistent: θn → θ∗ as n → ∞,
where the limit is the unique optimizer:

θ∗ = arg min
θ

{
−〈µ,Qθ〉+ κεĒε(θ)

}
(44)

The proof is based on recent SA theory [8], [27].
To justify (17), we must bring back the inequality con-

straints on the temporal difference, consistent with the DPLP
constraint (21b). The batch version of (35a) is denoted

zεn(θ) =
1

rn

Tn+1−1∑
k=Tn

min
i

{
D◦k+1(θ)ζεk (i)

}
(45)

We require ζεk (i) ≥ 0 for all k, i to ensure that the inequality
constraint zεn(θ) ≥ 0 is consistent with (21b). We then arrive
at a primal-dual refinement of BCQL1:

Batch Convex Q-Learning 2 With θ0 ∈ Rd, λ0 ∈ R+

given, along with a positive scalar κε, consider

θn+1 = arg min
θ

{
−〈µ,Qθ〉+ κεEεn(θ)

− λnzεn(θ) +
1

αn+1

1
2‖θ − θn‖2

} (46a)

λn+1 =
[
λn − δn+1z

ε
n(θn)

]
+

(46b)

Corollary 3.2: Suppose that assumptions (i) and (ii) of
Prop. 3.1 hold. Then, the sequence {θn, λn} obtained from
the pd-BCQL algorithm (46) is convergent to a pair (θ∗, λ∗),
and the following hold:

(i) The limit θ∗ is the solution of the convex program (17),
and λ∗ ∈ R+ is the Lagrange multiplier for the inequality
constraint in (17).
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Fig. 1: LQR optimal control using BCQL2

(ii) Consider the special case: the state space and action
space are finite, µ has full support, and the dimension of
ζεk is equal to dζ = |X| × |U|, with

ζεk (i) = 1{(xk, uk) = (xi, ui)}
where {(xi, ui)} is an enumeration of all state action pairs.
Suppose moreover that Q? is contained in the function
class. Then, Qθ

∣∣
θ=θ∗

= Q? ut
Corollary 3.2 is a corollary to Prop. 3.1, in the sense that it

follows the same proof for the joint sequence {θn, λn}. Both
the proposition and corollary start with a proof that {θn} is a
bounded sequence, using the “Borkar-Meyn” Theorem [10],
[8], [36]. Once boundedness is established, the next step is
to show that the algorithm (46) can be approximated by a
primal-dual ODE for a saddle point problem.

Comparisons with Deep Q-Learning The Deep Q Network
(DQN) algorithm was designed for neural network function
approximation; the term “deep” refers to a large number
of hidden layers. The basic algorithm is summarized below,
without imposing any particular form for Qθ. The definition
of {Tn} is exactly as in the BCQL algorithm.

DQN With θ0 ∈ Rd given, along with a sequence of
positive scalars {αn}, define recursively,

θn+1 = arg min
θ

{
κεEDQN

n (θ) +
1

αn+1
‖θ − θn‖2

}
(47a)

where for each n:

EDQN
n (θ) =

1

rn

Tn+1−1∑
k=Tn

[
−Dnk+1(θ)

]2
(47b)

and Dnk+1(θ) = −Qθ(xk, uk) + c(xk, uk) +Qθn(xk+1)
DQN appears to be nearly identical to (42). Prop. 3.3

(along with Prop. 3.1 and its corollary) show that this resem-
blance is superficial—the potential limits of the algorithms
are entirely different.

Proposition 3.3: Consider the DQN algorithm with pos-
sibly nonlinear function approximation, and denote ζn =
∇θQθ(xk, uk)

∣∣
θ=θn

. Assume that Qθ is continuously dif-
ferentiable, and its gradient ∇Qθ(x, u) is globally Lipschitz
continuous, with Lipschitz constant independent of (x, u).
Suppose that B = ∞, the non-negative step-size sequence
satisfies αn = α1/n, with α1 > 0, and suppose that the
sequence {θn} defined by the DQN algorithm is convergent
to some θ∞ ∈ Rd.

Then, this limit is a solution to (12), and moreover the
algorithm admits the ODE approximation d

dtϑt = f(ϑt)
using the vector field f defined in (12). ut

The assumption on the step-size is can be replaced by the
standard assumptions:

∑
αn = ∞,

∑
α2
n < ∞. The proof

of Prop. 3.3 can be found in [27]. Its conclusion should raise
a warning, since we do not know if (12) has a solution, or
if a solution has desirable properties. The conclusions are
very different for convex Q-learning.

IV. EXAMPLES

BCQL2 for LQR Consider the 3-dimensional LQR model:

F =

1 1 1
0 1 1
0 0 1

 G =

 0
0.1
0.2

 S =

1 0 1
0 1 0
1 0 1

 R = 1

The Q-function is quadratic in z = (xᵀ, u)ᵀ.
The algorithm was run with batch size 30, κε = 0.1,

αn+1 = (1+n)−0.85, and µ selected uniform on a collection
of points {zi} for 1 ≤ i ≤ 300 with unit norm in R4. For
(45) we chose

ζk(i) = q(
zk
‖zk‖

− zi) , zk = (xk(1), xk(2), xk(3), uk)ᵀ,

where q is a N(0, σ2) density, with σ2 = 20/300. The input
used for training was:

uk = −K◦xk +
gu√
D

D∑
i=1

sin(ωik)

where K◦ is selected such that eigenvalues of the matrix
(F − GK◦) lie in the open unit disk. The sequence {ωi}
were chosen as follows:

ωi = 10 + 100Ui, 1 ≤ i ≤ D
where {Ui} were drawn independently from a uniform
distribution in the interval [0, 1]. In each experiment, we
set gu = 4.0 and D = 30. Fig. 1 shows quick convergence
to the optimal solution.
CQL for MountainCar Consider the example as formu-
lated in [40, Ch. 10]:

zk+1 = [[x1(t) + x2(t)]]1

vk+1 = [[vk + 10−3uk − 2.5× 10−3 cos(3zk)]]2
(48)

The brackets are projecting the values of zk+1 to the interval
[zmin, zgoal] = [−1.2, 0.5], and zk+1 to the interval [−v, v],
with v = 7×10−2. The two dimensional state process xk =
(zk, vk)ᵀ evolves in X = [zmin, zgoal]× [−v, v]. The control
objective is to reach the goal zgoal = 0.5 in minimal time.

Fig. 2 shows results from one experiment using the CQL
algorithm (37) in which basis functions for Jθ and Qθ were
defined via binning—see [27] for details.
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Fig. 2: Value function and its approximation using CQL

V. CONCLUSIONS

The LP and QP characterization of dynamic programming
equations gives rise to RL algorithms that are provably
convergent, and for which we know what problem we are
actually solving. Much more work is required to develop
these algorithms for particular applications, and to improve
efficiency through a combination of algorithm design and
techniques from optimization theory. Applications to actor-
critic methods is another topic of current research.
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