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Motivations

• Finding optimal treatments for wound healing is important
• Challenges in applying Deep Reinforcement Learning (DRL) to biology:

■ Exploration should be constrained: ethical and safety concerns
■ We need guidance that help incrementally increase the performance of target policy

• Wound dynamics are intricate and nonlinear, making mathematical modeling hard
• Getting optimal controls for nonlinear dynamics is difficult
• Theory in linear models is well-developed
Objective: Design a DRL-based algorithm for accelerating wound healing while bal-
ancing the trade-off between exploration and exploitation
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Challenges:
• The optimization lies in function space, rendering it intractable in practical applications
• It is often hard to account for the effect of inputs and control in nonlinear systems
• Generalizations consider the control effect using deep learning, but still heavily rely on

overfitting the models without incrementally and adaptively online learning

DeepMapper

Chain Rule: dz
dt = dz

dx
dx
dt = Aωz + Jθ(x)Bu

Figure: A self-adaptive linearity abstraction for learning the linear representation of latent space in
Autoencoders for nonlinear wound healing dynamics
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Goal: Find a policy πθ such that ∑∞
t=0 γtr(xt, ut) is maximized with θ the weight of DNNs.

θt+1 = θt + αt+1
[
r(xt, ut) + Qθt−1(xt+1) − γQθt(xt, ut)

]
∇θQ

θ(xt, ut)|θ=θt

where πθ(x) ∈ arg max
u∈U

Qθ(x, u), Qθ(x) := max
u∈U

Qθ(x, u)
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DeepMapper: Where Does the Control u Come From

• DRL agent wants to find a policy π that tracks the decoded nonlinear signal of the linear signal
that is optimal if it is stable

• DRL agent will get punished for generating control that makes the linear representation unstable
• We have formulated a closed-loop control framework that learns optimal control policy adaptively

and incrementally with a safety guide
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Numerical Study: Problem Setup

Nonlinear Wound dynamics:
Debris: ȧ = −am1

M1: ṁ1 = βa − ȧ − ρ mq
1

kq+mq
1
− γ1m1 + D̃

[
1
r̃

∂m1

∂r̃
+ ∂2m1

∂r̃2

]
− um1

M2: ṁ2 = ρ mq
1

kq+mq
1
− γ2m2 + D̃

[
1
r̃

∂m2

∂r̃
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Temporary Tissue: ċ = m2 − µc

New Tissue: ṅ = c

[
α̃n(1 − n) + D̃n

[
1
r̃

∂n

∂r̃
+ ∂2n

∂r̃2

]]
Linear Representation:

Hemostasis: Ḣ = −khH

Inflammation: İ = khH − kiI

Proliferation: Ṗ = kiI − kpP

Maturation: Ṁ = kpP

Numerical Study: Performance of DeepMapper

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time, day

0.0

0.2

0.4

0.6

0.8

1.0

No
nl

in
ea

r s
ta

te
 v

ar
ia

bl
e 

va
lu

es

a-Exact
m1-Exact
m2-Exact
c-Exact
n-Exact
a-DL
m1-DL
m2-DL
c-DL
n-DL

(a) Results of time dependent variables in the
nonlinear model and decoded states
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(b) Results of time dependence of all variables in
the linear representation.

Numerical Study: Policy Comparison
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(a) Different policies of wound treatment vs. time & pos
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(b) Wound size vs. time

Conclusion & Future Work

• A general closed-loop control framework that incorporates deep learning, optimal adaptive
control, and reinforcement learning for accelerating wound healing

• The proposed method has successfully reduced the wound healing time by a significant
quantity compared to those without any treatment and treatment found by [4], as well as
capturing the concerns of safety and less drug usage

• Optimality guarantee from the DRL algorithm [1, 2, 3]?
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